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Both modal expansion and travelling wave methods are commonly used for predicting
the response and vibrational energy flow in structures. They describe the same structural
wave motion problem from different viewpoints. In this paper, energy flows carried by the
torsional and flexural waves in beam structures are predicted by these two methods and
the results are compared. It is shown that the convergence property of the energy flow
predicted by the modal expansion method may be poor in the vicinity of the forcing
location. The limitation of using a finite number of continuous mode shape functions to
represent the discontinuity at the forcing location is illustrated. It is observed that the
energy flow predicted by the modal expansion method oscillates about the exact energy flow
obtained by the travelling wave method. The sources of the fluctuation are investigated.
The study also suggests that spatial averaging of the oscillated energy flow may give a
better approximation of the exact energy flow without using an extremely large number
of modes.
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1. INTRODUCTION

The dynamic response of an elastic structure can be described either by the modal
expansion method (MEM) or the travelling wave method (TWM). The former method is
based on the eigensolutions of the structural wave equation with homogeneous boundary
conditions. According to the modal expansion theory [1], the structural response to any
forcing function can be described as the superposition of all the eigenmodes. The latter
method employs travelling wave components in all possible directions of the structure and
the structural response is due to the superposition of the travelling wave components. For
flexural waves in a beam, extra non-propagating wave solutions have to be included to
satisfy the conditions of displacement continuity and force equilibrium at the boundaries,
coupling joints and forcing locations. It is well known that the resonance response
predicted by the modal expansion method can be interpreted as the coincidence
superposition of travelling waves with opposite wave-number vectors described as incident
and reflected waves.

Because the two methods describe the same wave motion, they are expected to be
interchangeable. Although both modal expansion and travelling wave methods can be used
for the prediction of energy flow in structures, there are cases where the modal expressions
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of the energy flow and structural response are more convenient and computationally
efficient. Examples are band-limited energy flow, energies [2, 3] and the structural response
to the excitation of PZT actuators [4]. However, the equivalence of the two methods in
theoretical development does not guarantee the equivalent numerical properties when used
in the calculation of energy flow in a structure. Because the response of the structure cannot
be practically represented by an infinite number of eigenmodes, convergence in its
calculation using the modal approach should be questioned, particularly in the near field
of the driving force. Even though a good convergence is obtained for a given number of
modes used for the prediction of the structure response, the same number of modes may
not satisfy the convergence requirements for the derivatives of the response. When energy
flow in the structure is calculated, the higher order derivatives of the displacement response
are required to calculate the tensile force, shear force and rotating moments in the
structure. As the convergence property of the higher order derivatives is usually poorer
than that of the displacement response, the accuracy in the prediction of the energy flow
can be limited [2]. For the study of the active control of structural vibrations, the design
of the physical system involves the analysis of the structual/actuator interactions. An
accurate description of the structural response near the actuator and sensor locations is
important for estimating the control system behaviour. The convergence problem in the
model prediction of the physical systems may affect the robustness of feedback control
systems [5].

The objective of this paper is to study the effect of truncation error of the MEM on
the prediction of structural energy flow. The significance of this subject has been
emphasized by many authors [6]. Although it is well known that the accuracy of modal
approach in the prediction of system response is related to the number of modes taken
into account and that the accuracy diminishes at the near-field of sources and certain
boundary types, little work has been done on this truncation effect on the higher order
derivatives of the response. Any error in the prediction of higher order derivatives of the
response will directly affect the prediction accuracy of energy flow in the system.
Furthermore, the study of the characteristics of the modal truncation may provide a
post-processing method to reduce the induced error without using an extremely large
number of modes.

In this paper the energy flow carried by the torsional and flexural waves in a thin beam
is calculated using both MEM and TWM. The results are compared and used to illustrate
the convergence properties associated with the modal expansion approach.

2. TORSIONAL VIBRATION OF A THIN ROD

In the first example, the torsional response of a thin rod to a harmonic torque M0ejvt

at x= x0 is considered. Although the solution of the torsional response by either the modal
expansion method or travelling wave method is well known, the comparison of the energy
flow calculated by the two methods may improve our understanding of the convergence
properties in the prediction of torsional energy flow.

2.1.    MEM  TWM
The torsional equation of motion of a thin rod with a harmonic torque acting at x= x0

can be written as:

12u	
1x2 −

1
c2

T

12u	
1t2 =

M0 ejvt

GIT
d(x− x0) (1)
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where u	 (x, t) is the angular displacement of the cross section at x. G=G0 (1+ jhT ) is the
complex shear modulus and hT is the shear loss factor. IT is the moment of the cross section
around the rod axis. cT = zG/r is the phase speed of the torsional wave in the rod and
r is the density of the rod. The longitudinal vibration in the rod due to the excitation of
a point force F0 ejvt in the axial direction at x= x0 is also described in the same form as
equation (1). For the longitudinal vibration, u	 (x, t) in equation (1) should be replaced by
longitudinal displacement u(x, t), cT by cL = zE/r , GIT by EA (E is Young’s modulus and
A is the area of cross section) and M0 by F0. Therefore the discussion on the convergence
properties of the torsional vibration hereafter can be applied to that of the longitudinal
vibration as well.

Assuming the torsional rod is fixed at x=0 and a torque is applied to the other end
at x=L, the corresponding boundary conditions are:

u	 (0, t)=0,
1u	
1x

(L, t)=
M0 ejvt

GIT
. (2)

Using the modal expansion method and mode shape functions of a fixed-free rod, the
torsional displacement u	 (x, t) in the rod can be written as follows:

u	 (x, t)= u(x, v) ejvt =
2M0

rLIT
s
a

m=1

(−1)m+1 sin am x
v2

m −v2 ejvt (3)

where

v2
m = a2

m
G
r

, am =
(2m−1)p

2L
, m=1, 2, 3, . . . . (4)

Assuming the angular displacement u	 (x, t) is superimposed by the following two
travelling waves:

u	 (x, t)=A ej(vt+ kT x) +B ej(vt− kT x), (5)

and using the fixed-free boundary conditions, it can be shown A=−B= jM0 /
(2GIT kT cos kT L) where kT =v/cT. Therefore the angular displacment from the travelling
wave method is

u	 (x, t)=
M0 sin kT x

GIT kT cos kT L
ejvt. (6)

2.2.   

An expression for the time-averaged energy flow carried by the torsional waves in the
x direction is:

PT (x)=−
v

2
Im 6GIT

1u	
1x

u	 *7 (7)

T 1

Parameters used for torsional energy flow

L 5·0 m r 274·0 kg m−3

IT 2·356×10−3 m4 hT 0·01
G0 1·0518×1010 N m−2
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T 2

Parameters used for flexural energy flow

L 1·0 m r 274·0 kg m−3

IB 1·047×10−7 m4 h 0·01
A 5·0×10−4 m2 x0 0·31 m
E0 7·12×1012 Nm−2

where * represents the complex conjugate. Using equation (3) the energy flow by the modal
expansion method is

PT(x)=−
2M2

0 v

r2L2IT
Im 6G s

a

m=1

(−1)m+1am cos am x
v2

m −v2 s
a

n=1

(−1)n+1 sin an x
v*2

n −v2 7 (8)

while the travelling wave method gives

PT (x)=−
M2

0 v

2IT
Im 60cos kT x

cos kT L1 0 sin kT x
GkT cos kT L17. (9)

3. FLEXURAL VIBRATION OF A THIN BEAM

The second example is that of a simply supported beam excited by a harmonic point
force F0 ejvt at x= x0. Although the solution of the beam flexural response by either the

Figure 1. Torsional energy flow PT at 900 Hz. Solid curve: by MEM (50 modes), dotted curve: by TWM.
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Figure 2. Angular displacement of the rod at 900 Hz. (a) Magnitudes of u	 , (b) phases of u	 [solid curve: by
MEM (50 modes), dotted curve: by TWM], and (c) =u	 =MEM − =u	 =TWM.

modal expansion method or the travelling wave method is a trivial exercise, the comparison
of the energy flow by the two methods, however, may give some insight into the
convergence property of the predicted energy flow carried by flexural waves.

3.1.       MEM  TWM
According to the modal expansion method, the displacement reponse, W(x) ejvt, can be

expressed as:

W(x)=
2F0

rLA
s
a

m=1

sin bm x0 sin bm x
v2

m −v2 (10)

where

bm =
mp

L
, vm = b2

mXEIB

rA
, m=1, 2, 3, . . . (11)

and E, r, IB , L, A are respectively the complex Young’s modulus [E=E0 (1+ jh), h is
the tensile loss factor], density, moment about the neutral plane, length and area of the
cross section of the beam.

On the other hand, the travelling wave solution of the one-dimensional bending wave
equation gives the following general solution:
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W(x)=6W1 (x)=A1 ekx +A2 e−kx +A3 ejkx +A4 e−jkx,
W2 (x)=A5 ekx +A6 e−kx +A7 ejkx +A8 e−jkx,

(xE x0)
(xe x0)

(12)

where k2 = z(rA/EIB ) and the coefficients A1, A2, . . . , A8 are determined by the boundary
conditions at x=0, x=L (in this analysis simply supported boundary conditions are
assumed) and the joint conditions at x= x0. The solution of the coefficients can be
obtained as illustrated in Appendix A.

3.2.   

The energy flow carried by flexural waves through a cross section of the beam can be
expressed as:

PB (x)=
v

2
Im 6EIB01W*

1x
12W
1x2 −W*

13W
1x3 17 (13)

where EIB is the bending rigidity of the beam.

4. RESULTS AND DISCUSSION

In this section, the torsional and flexural energy flows in two beam structures are
calculated using the modal expansion method and travelling wave method. Table 1 lists
the parameters of a rod with fixed-free boundary conditions for the torsional energy flow.
The parameters of a thin beam with simply supported boundary conditions for the flexural

Figure 3. Derivative of angular displacement of the rod at 900 Hz. (a) Magnitudes of 1ũ/1x, (b) phases of
1u	 /1x [solid curve: by MEM (50 modes), dotted curve: by TWM] and (c) =1u	 /1x =MEM − =1u	 /1x =TWM.
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Figure 4. Flexural energy flow PB at 270 Hz. Solid curve: by MEM (50 modes), dotted curve: by TWM.

energy flow are shown in Table 2. The energy flow in each structure is predicted using
MEM and TWM. Results are compared and the sources of the energy flow fluctuation
when MEM is used about the exact energy flow are analysed in terms of the convergence
properties of the modal expansion series for the displacement response and its derivatives.
Although the modal truncation error causes an inaccurate prediction of the energy flow,
the spatial-averaged energy flow appears to give a good approximation to the exact value.
Finally, the prediction of energy flow due to the driving force and moment is considered.
The input energy flow can be predicted accurately using the modal expansion method when
the input forcing function is used directly instead of that calculated from the constitutive
relationships.

Figure 1 shows the torsional energy flow in a rod excited by a unit torque at x=L.
The frequency of excitation is 900 Hz. The solid curve was obtained using MEM with 50
modes while the dotted one was calculated using TWM. The fluctuation of the energy flow
from MEM decreases at observation point away from the driving torque.

To study the source of the fluctuation of the predicted energy flow, the torsional
displacement u	 and its derivative 1u	 /1x by MEM and TWM are shown in Figures 2 and
3 respectively. The differences between u	 and its derivative 1u	 /1x for the two methods are
also shown in the figures. It can be seen that the difference in magnitude and phase of the
angular displacements predicted by the two methods are very small. The maximum
difference of the angular displacement is smaller than the magnitude of the angular
displacement itself by an order of two. This indicates that 50 modes used in the modal
expansion method are sufficient for the prediction of the torsional displacement response
for this case. However, significant differences [as shown in Figure 3(a)] are found in the
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derivatives of the angular displacement 1u	 /1x (related to the torsional stress), particularly
at the cross sections near the driving torque. For this case the difference of the derivatives
by the two methods is nearly of the same order as the derivatives themselves. The
convergence of the displacement from the modal expansion method can be approximately
described by the series aa

N 1/n2, where N is the mode number whose resonance frequency
is first larger than the driving frequency [7]. However, the convergence of the derivative
of the displacement is approximated by aa

N 1/n . Clearly, a given number of modes may
give a sufficient accuracy in the predicted displacement response, but may not give the same
level of accuracy in the predicted derivatives of the response.

At the driving frequency, the contribution of the errors in the displacement and its
derivative to the error in the energy flow by MEM can be explained as in the following
analysis. Using the modal expansion method, the exact displacement u� can be expressed
by the sum of the approximate displacement u� due to the expansion of a finite number
of modes and displacement error Du�:

u	 = u�+Du�. (14)

Similarly, the exact derivative of the displacement can be expressed as:

u	 '= u�'+Du�'. (15)

From equations (7), (14) and (15), the error in the energy flow due to the use of finite
number of modes is:

Figure 5. Displacement W of the beam at 270 Hz. (a) Magnitudes of W, (b) phases of W [solid curve: by MEM
(50 modes), dotted curve: by TWM] and (c) =W=MEM − =W=TWM.
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Figure 6. Third derivative W1 of displacement of the beam at 270 Hz. (a) Magnitudes of W1, (b) phases of
W1 [solid curve: by MEM (50 modes), dotted curve: by TWM] and (c) =W1=MEM − =W1=TWM.

DPT (x)=−
v

2
Im {GIT (Du�'u�*+ u�'u�*+Du�'Du�*)}. (16)

Using the magnitudes of u�, Du�, u�' and Du� shown in Figures 2 and 3, the terms which
are responsible for the fluctuation in DPT (x) can be identified. Away from the excitation
location, Figures 2 and 3 show that the error terms Du� and Du�' have magnitude of the
order of 10−10 and 10−1 respectively. However, the maximum values for u� and u� are
approximately 4·8×10−8 and 3·4 respectively. It can therefore be seen that both Du� and
Du�' may have significant contribution to the error in the energy flow. This is because the
error in the energy flow depends on the cross products Du�'u* and u�'Du*. Although Du� is
relatively small, it is amplified by a large value of u�'. On the other hand, the large Du�' is
multiplied by a small displacement u�. As a result, the two products have comparable
magnitudes.

Figure 4 shows the flexural energy flow in a simply supported beam at 270 Hz. A point
force of unit amplitude is applied at x=0·31 m of the beam. The fluctuation of predicted
flexural energy flow by MEM using 50 modes is also observed in the vicinity of the driving
force. The source of the fluctuation can also be traced in terms of the convergence
properties of the flexural response and its higher order derivatives. For the prediction of
flexural energy flow, the calculation of the second and third order derivatives of the beam
displacement is required for the bending moment and shear force in the beam. The
convergence property of the flexural displacment is described by aa

N 1/n4, while that of the
shear force and bending moment are approximated by aa

N 1/n and aa
N 1/n2 respectively.

As a result, it is expected that the shear force will suffer the largest modal truncation error.
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Figure 6 shows the third derivative of the response. The discontinuity of the shear force
is clearly identified in the vicinity of the driving force. The superposition of a finite number
of continuous modes is insufficient to represent such a force discontinuity. Therefore, a
large error is introduced. The contribution of the errors in predicting the response and its
derivatives to the error in the flexural energy flow due to the use of a finite number of
modes can also be analysed in a similar way to that of the torsional energy flow. Using
W�, W�', W�0 and W�1 for the approximate beam displacement and its derivatives due to a
finite expansion of modes, DW�, DW�', DW�0 and DW�1 for the corresponding error terms,
the error in the flexural energy flow can be expressed as:

DPB (x)=
v

2
Im {EIB [(DW�')*W�0+(W�')*DW�0+(W�)*DW�1

+(DW�)*W�1+(DW�')*DW�0+(DW�)*DW�1]}. (17)

A similar analysis to that used for the torsional energy flow can be used to evualate the
main sources of the error in the predicted energy flow. It is obvious that error in the energy
flow is not only dependent upon the errors in the displacement and its derivatives, but also
on the magnitudes of the approximate displacement and its derivatives. Figure 5 shows
the distributed displacement response (magnitude =W = and phase �W) of the flexural beam
at a frequency of 270 Hz. Figure 6 shows the distributed higher order derivative W�1 and
DW�1. They are used to evaluate some of the products in equation (17) and explain the
cause of the error in predicting the distributed energy flow by MEM in Figure 4. It has
been shown that the largest flucuation in energy flow from MEM occurs at the driving
location because the discontinuity of the internal stress there is difficult to represent by
continuous mode shape functions. It is also shown that the structural response predicted
by MEM is sufficiently accurate without using a large number of modes. One would expect
to have a large error in the predicted input power at the driving location when the forcing
term is calculated by EIB W1. For this case the external force must be used instead in order
to give an accurate prediction of input power [7].

An interesting observation of the fluctuation in the predicted energy flow using MEM
is its oscillating nature. The magnitude of the oscillation increases as the observation
location approaches the driving location. Further investigation reveals two other features
in the energy flow predicted using MEM:

(1) At any cross-section, the absolute deviation of the predicted energy flow by MEM
from the exact one reaches its maximum as the driving frequency coincides with one of
the resonance frequencies of the beam. Figure 7(a) shows the deviations of torsional energy
flow evaluated at four cross-sections corresponding to x=0·3, 0·7, 0·95, 0·98 L as
functions of the driving frequency (for this case x=0·31 L corresponds to the source
location). The peaks in all the deviation curves correspond exactly to the torsional
resonance frequencies of the rod at 98·0, 293·9, 489·8, 685·7, 881·7 Hz. The reason for the
maximum error in torsional energy flow occurring at the resonance frequencies can be
readily explained using equation (16). Although the error in the response and torsional
stress due to a finite modal expansion remains of the same order at both resonance and
non-resonance frequencies, the error in the energy is contributed by the product terms
Du�'u�* and u�'Du�*. Near the resonance frequencies, the approximate angular displacement
and its derivative reach a maximum. They are attributed to the large values in the product
terms and the large error in the predicted energy flow. Similar results were observed in
the absolute energy flow deviation of flexural waves in the beam as a function of frequency
[see Figure 7(b)]. The peak deviations at the resonance frequencies of the beam (115·9,
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Figure 7. Difference of energy flow by MEM and TWM as function of frequency. (a) For torsional energy
flow in the rod and (b) for flexural energy flow in the beam.
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463·5, 1042·8 and 1853·9 Hz can also be explained by the contribution of the large response
and its derivatives to the product terms in equation (17).

(2) It is observed that in the near field of the driving source the average fluctuation period
of the distributed deviation in energy flow is independent of the vibrational frequency as
long as the total number of modes M used in the modal expansion is unchanged. Increasing
M, however, will reduce the average spatial fluctuation period. Figures 8 and 9 show the
absolute deviations of torsional and flexural energy flow in the near-field areas of the beam
structures. Three values of M are used for the observations of the relationship between
the spatial period and M. Each subplot in the figures corresponds to a constant M. The
solid, dotted and dashed curves correspond to different driving frequencies given in the
figure captions. It can be seen that all the curves in each subplot intersect with the x axis
at the same locations. This indicates that the spatial fluctuation of energy flow by MEM
is a function of M. The observation of the fluctuation in torsional and flexural energy flow
shows that the average spatial period seems to be approximately equal to the wavelength
of the lowest [the (M+1)th order] mode being truncated. For the torsional energy flow
the spatial period of fluctuation is l(T)

M+1 =2L/M, and for the flexural energy flow the
period is l(B)

M+1 =2L/(M+1). It should be noted that the energy flow deviation in
each spatial cycle includes positive values in half cycle and negative in the other.
Obviously, a spatial average of the energy flow from the MEM within each cycle may give
rise to a better representation of the energy flow near the driving force location. However,
the determination of an optimal spatial average approach (e.g. determination of the
weighting function in the weighted spatial average algorithm) for obtaining the energy flow

Figure 8. Absolute deviation of the predicted torsional energy flow by MEM from that by TWM. The solid,
dotted, dashed and dashed- dotted curves correspond respectively to the driving frequencies at 900, 500, 100 and
50 Hz.
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Figure 9. Absolute deviation of the predicted flexural energy flow by MEM from that by TWM. The solid,
dotted and dashed lines correspond respectively to the driving frequencies at 600, 300 and 100 Hz.

with minimum influence of modal truncation error remains the task of further
investigation.

As the mode shape functions satisfy the selected boundary conditions used in this paper,
the effect of the modal truncation on energy flow at near field of the boundaries becomes
unimportant. However, if the mode shape functions do not satisfy the boundary
conditions, such as for the case of sound field with complex acoustical admittance as its
boundaries [7], this effect will become significant.

5. CONCLUSIONS

The energy flow predicted by the modal expansion method may suffer from slow
convergence problems and modal truncation error in the area near the driving location.
The sources of the truncation errors in the predicted energy flow essentially come from
the error in the estimation of the beam response and its derivatives, and from the difficulty
to represent the force discontinuity at the driving location using a limited number of
continuous mode shape functions. The investigation of the fluctuation of the predicted
energy flow by MEM shows that spatial averaged energy flow can give more accurate
approximation of the energy flow when a limited number of modes only are used in the
modal expansion and modal truncation error is significant.

It is also shown that the input force must be used directly for the calculation of energy
flow at the input location because the largest modal truncation error in the calculation of
internal stresses using the constitutive relationship occurs at the driving location.
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APPENDIX A: THE TRAVELLING WAVE COEFFICIENTS OF SIMPLY SUPPORTED
BEAM

Substituting the travelling wave solution, equation (13), into the following four
boundary conditions:

W1 =x=0 =0,
12W1

1x2 bx=0

=0, W2 =x=L =0,
12W2

1x2 bx=L

=0, (A1)

and four joint conditions:

W1 =x= x0
=W2 =x= x0

,
1W1

1x bx= x0

=
1W2

1x bx= x0

,
12W1

1x2 bx= x0

=
12W2

1x2 bx= x0

, (A2a)

13W2

1x3 bx= x0

−
13W1

1x3 bx= x0

=
F0

EI
, (A2b)

a set of linear equations can be obtained. The coefficients A1, . . . , A8 in equation (13) are
calculated from the solution of the following matrix equation:

FA=B (A3)
where

A=(A1, A2, A3, A4, A5, A6, A7, A8)T (A4)

B=00, 0, 0, 0, 0, 0, 0,
F0

EIk31
T

(A5)
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and

1 1 1 1 0 0 0 0
1 1 −1 −1 0 0 0 0

0 0 0 0 ekL e−kL ejkL e−jkL

0 0 0 0 ekL e−kL −ejkL −e−jkL

G
G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

.F= ekx0 e−kx0 ejkx0 e−jkx0 −ekx0 −e−kx0 −ejkx0 −e−jkx0

e−kx0 −e−kx0 jejkx0 −je−jkx0 −e−kx0 e−kx0 −jejkx0 je−jkx0

e−kx0 e−kx0 −ejkx0 −e−jkx0 −ekx0 −e−kx0 ejkx0 e−jkx0

−e−kx0 e−kx0 jejkx0 −je−jkx0 e−kx0 −e−kx0 −jejkx0 je−jkx0

(A6)


